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Hamiltonian Extension and Eigenfunctions for a Time
Dispersive Dissipative String

Alexander Figotin and Jeffrey Schenker

Abstract. We carry out a detailed analysis of a time dispersive and dissipa-
tive (TDD) string, using our recently developed theories of conservative and
Hamiltonian extensions of TDD systems. This analysis of the TDD string
includes, in particular: (i) an explicit construction of its conservative Hamil-
tonian extension, consisting of the original string coupled to “hidden strings”;
(ii) explicit formulas for energy and momentum densities in the extended sys-
tem, providing a transparent physical picture accounting precisely for the dis-
persion and dissipation; (iii) the eigenmodes for the extended string system,
which provide an eigenmode expansion for solutions to the TDD wave equation
governing the solution to the TDD string. The obtained results provide a solid
basis for the rigorous treatment of the long standing problem of scattering by
a TDD scatterer, illustrated here by the computation of scattering states for
a string with dissipation restricted to a half line.

1. Introduction

The need for a Hamiltonian description of dissipative systems has long been
known, having been emphasized by Morse and Feshbach [5, Chapter 3.2] forty
years ago. Recently we have introduced conservative [1] and then Hamiltonian
[2, 3] theories of time dispersive and dissipative (TDD) systems addressing that
need. The extended Hamiltonian is constructed by coupling the given TDD system
to a system of “hidden strings” in a canonical way so that it has a transparent
interpretation as the system energy. It turns out that such a system of hidden
strings is, in fact, a canonical heat bath as described in [4, Section 2; 6, Section 2].

This work is intended as a self contained companion to the papers [1–3], illus-
trating the phenomena described there through explicit calculations for the typical
example of a TDD string.

To keep everything elementary, let us consider a scalar wave equation in one
spatial dimension, such as might be used to describe wave propagation along a
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homogeneous string. In the absence of dispersion, the displacement φ(x, t) of the
string at position x ∈ R and time t ∈ R evolves by the 1D wave equation

(1.1) ∂2
t φ(x, t)− γ∂2

xφ(x, t) = f(x, t), x, t ∈ R,
where

• γ is the tension of the string.
• we have taken units in which the mass per unit length is 1.
• f(x, t) is an external driving force per unit length, usually supposed

bounded and compactly supported.
For the most part, we consider (1.1) with the string at rest at t = −∞,

(1.2) lim
t→−∞

φ(x, t) = lim
t→∞

∂tφ(x, t) = 0.

Thus the solution φ(x, t) is a function of the driving force f(x, t), indeed

(1.3) φ(x, t) =
1
2v

∫ t

−∞

∫ x+v(t−t′)

x−v(t−t′)
f(y, t′) dy dt′

with v = 1/
√
γ the speed of propagation on the string.

In this paper we consider a modification of (1.1) incorporating friction in the
form of a dissipative term with time dispersion. Specifically, we consider the fol-
lowing equation

(1.4) ∂t

{
∂tφ(x, t) +

∫ t

−∞
χ(x, t− t′)∂t′φ(x, t′) dt′

}
− γ∂2

xφ(x, t) = f(x, t),

with χ(x, τ) a given function, called the susceptibility, satisfying a power dissipation
condition— (1.23) below. The physical idea behind (1.4) is as follows. The wave
equation (1.1) can be expressed in terms of the string momentum π(x, t) = ∂tφ(x, t)
as

(1.5) ∂tπ(x, t) = sum of all forces at x = f(x, t)︸ ︷︷ ︸
driving force

+ γ∂2
xφ(x, t)︸ ︷︷ ︸

string tensile force

.

In the damped string (1.4), the basic relation ∂tπ = “sum of all forces” still holds,
but the simple relationship π = ∂tφ between the string momentum and velocity is
replaced by the material relation

(1.6) π(x, t) = ∂tφ(x, t) +
∫ t

−∞
χ(x, t− t′)∂t′φ(x, t′) dt′.

Equation (1.6) is supposed to be a phenomenological relation describing the inter-
action of the string with a surrounding medium, expressing the fact that some of
the string momentum is absorbed by the medium and then partially retransmitted
to the string with delay.

The wave equation (1.1) may be expressed as a Hamiltonian system. As de-
scribed in [2, 3], the procedure of going from (1.1) to (1.4) is naturally understood
in this context and indeed (1.4) can be derived from a larger Hamiltonian system,
with additional variables. The additional variables of this extension may be inter-
preted as describing a “hidden string,” with internal coordinate s, attached to each
point x of the physical string (see Figure 1). These “hidden strings” are coupled to
the physical string via a coupling function ς(x, s), but do not interact directly with
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Figure 1. The extended system consists of the physical string
(thick) coupled to an independent “hidden string” (thin) at every
point of dissipation. This Hamiltonian system models exactly the
dissipation and dispersion in the physical string via the exchange
of energy with the hidden strings.

one another.1 Upon “integrating out” the hidden strings, the result is an effective
dynamics of the form (1.4) for the physical string, with susceptibility

(1.7) χ(x, τ) =
1
2

∫

R
ς(s, x)

∫ s+τ

s−τ

ς(x, r) dr ds.

Different choices of the coupling function ς(x, s) produce different susceptibilities
χ(x, τ), and furthermore [2, 3] any susceptibility satisfying the power dissipation
condition— (1.23) below—can be obtained in this way.

Given the role of the TDD wave equation (1.4) as a phenomenological descrip-
tion for the interaction of the string with its environment, it is not surprising that
an extended system exists which produces the effective dynamics (1.4), at least
approximately. However, the main point of [2, 3], which we explain below, is that
it is possible to construct explicitly an extended system which exactly reproduces
(1.4). Further, using that system we can derive simple expressions for quantities
like the energy and wave momentum densities for the damped string in terms of
the susceptibility χ.

In addition, as illustrated below, the extended system clarifies the nature and
role of eigenfunctions in a TDD system by providing a natural eigenmode expansion

1The lack of interaction between hidden strings is not essential. Indeed the methods of [1–3]
allow to consider systems with “spatial dispersion” in the material relation

π(x, t) = ∂tφ(x, t) +

Z

R

Z ∞

0
χ(x′, τ)∂tφ(x− x′, t− τ) dτ dx′.

The extensions for such systems involve interaction between the hidden strings, but for simplicity
we do not pursue this here.
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for solutions to (1.4). In this context, an eigenfunction exp(−iωt)φω(x) is a time
periodic steady state solution to (1.4). For the simple nondissipative string (1.1),
an eigenmode solves

(1.8) γ∂2
xφω(x) = −ω2φω(x),

which is to say it is a linear superposition of the plane waves exp(±iωx/
√
γ). For

the TDD string (1.4), the dissipation induced by the dispersion in (1.6) may pre-
clude the existence of a steady state solution without a source term. However,
the extended system is without dissipation, and it is no trouble to construct its
eigenmodes. We find below that the resulting eigenmode equation for φω

(1.9) γ∂2
xφω(x) = −ω2

(
1 + Re χ̂(x, ω)

)
φω(x)− iω2 Im χ̂(x, ω)gω(x),

has a source term involving an arbitrary function gω, which depends on the config-
uration of the hidden strings. Here χ̂ is the τ -Fourier transform of χ,

(1.10) χ̂(x, ω) =
∫ ∞

0

eiωτχ(x, τ) dτ.

Let us now sketch the construction of the Hamiltonian extension. To start we
write (1.1) as a first order system, introducing the momentum density π(x, t) =
∂tφ(x, t), so that

(1.11)
∂tφ(x, t) = π(x, t)

∂tπ(x, t) = γ∂2
xφ(x, t) + f(x, t).

This first order system is Hamiltonian, with symplectic form

(1.12) J(φ1, π1;φ2, π2) =
∫

R
(φ1(x)π2(x)− φ2(x)π1(x)) dx

and time dependent Hamilton function

(1.13) Hf (φ, π, t) =
1
2

∫

R
(π(x)2 + γ|∂xφ(x)|2) dx−

∫

R
f(x, t)φ(x) dx.

As the system is nonautonomous, Hf (π(·, t), φ(·, t), t) is not conserved. Instead
along a trajectory to (1.11), we have

(1.14)
dHf

dt
= ∂tHf (φ(·, t), π(·, t), t) = −

∫

R
∂tf(x, t)φ(x, t) dx.

We take the internal energy of the (undamped) string to be the Hamilton function
H0(φ, π) of the system with f ≡ 0. Thus, using (1.14) we obtain

(1.15)
dH0

dt
=

dHf

dt
+

d
dt

∫

R
f(x, t)φ(x, t) dx =

∫

R
f(x, t)∂tφ(x, t) dx.

In other words, the rate of work done on the system is the integral of the external
force times the velocity— “power = force × velocity.”

Observe that the Hamiltonian H0 can be written

(1.16) H0(φ, π) = 1
2

(‖Kππ‖2L2(R) + ‖Kφφ‖2L2(R)

)

where

(1.17) Kφ =
√
γ∂x, Kπ = Identity.
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Based on this expression, we separate the equations of motion (1.11), into “material
relations”

fφ(x) = Kφφ(x) =
√
γ∂xφ(x)(1.18)

fπ(x) = Kππ(x) = π(x),(1.19)

and dynamical equations,

(1.20)
∂tφ(x, t) = K†

πfπ(x, t)

∂tπ(x, t) = −K†
φfφ(x, t) + f(x, t).

To obtain a first order TDD system leading to (1.4), we follow [2,3] and replace
the identity (1.19) with the “material relation,”

(1.21) fπ(x, t) +
∫ ∞

0

χ(x, τ)fπ(x, t− τ) dτ = π(x, t),

but maintain (1.18) and the equations of motion (1.20), i.e.,

(1.22)
∂tφ(x, t) = fπ(x, t)

∂tπ(x, t) = γ∂2
xφ(x, t) + f(x, t).

(One could also introduce dispersion in the relation between φ and fφ, or even
dispersion mixing fφ and fπ, but for simplicity we consider here only TDD in the
momentum.) The key requirements on the susceptibility χ are

(1) Causality, manifest in (1.21) in that the integral on the l.h.s. depends only
on the past.

(2) Power dissipation, which is the requirement that for every x

(1.23)
∫ ∞

−∞
g(t)

∫ ∞

0

χ(x, τ)∂tg(t− τ) dτ dt ≥ 0

for an arbitrary function g(t), say compactly supported.
The significance of the power dissipation condition is as follows. We suppose

that the internal energy of the TDD system at time t is given by

(1.24) H0 =
1
2

∫

R
(fπ(x, t)2 + γ∂xφ(x, t)2) dx,

with fπ(x, t) as in (1.21). Then
d
dt
H0(t)(1.25)

=
∫

R

(
γ∂xφ(x, t)∂t∂xφ(x, t) + fπ(x, t)∂tfπ(x, t)

)
dx

=
∫

R

(
γ∂xφ(x, t)∂xfπ(x, t) + fπ(x, t)∂tπ(x, t)

− fπ(x, t)
∫ ∞

0

χ(x, τ)∂tfπ(x, t− τ) dτ
)

dx

=
∫

R

(
γ∂xφ(x, t)∂xfπ(x, t) + γfπ(x, t)∂2

xφ(x, t)

+ fπ(x, t)f(x, t)− fπ(x, t)
∫ ∞

0

χ(x, τ)∂tfπ(x, t− τ) dτ
)

dx

=
∫

R
f(x, t)∂tφ(x, t) dx−

∫

R

[∫ ∞

0

χ(x, τ)∂2
t φ(x, t− τ) dτ

]
∂tφ(x, t) dx,
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where in going from the third to the final line we have used integration by parts
and the assumption that ∂xφ and fπ vanish at spatial infinity. The first term on
the r.h.s. is the rate of work done on the system by the external force f . Similarly,
we interpret the second term as the rate of work done by the dissipative force,
− ∫

χ(τ)∂2
t φ(x, t−τ) dτ . Thus, power dissipation amounts to the requirement that,

for any trajectory, the total work done by the dissipative force is negative.
Let us note that the right hand side of (1.23) is equal to

(1.26) χ(x, 0)
∫ ∞

−∞
g(t)2 dt+

∫ ∞

−∞
g(t)

∫ ∞

0

∂τχ(x, τ)g(t− τ) dτ dt

=
∫

R2
{χ(x, 0)δ(t1 − t2) + 1

2 [∂τχ](x, |t1 − t2|)}g(t1)g(t2) d2t,

which follows from integration by parts after noting that ∂tg(t− τ) = −∂τg(t− τ).
Here δ(t) is the Dirac delta function. Thus the power dissipation condition is
equivalent to the statement that for every x the (generalized) function

(1.27) Dχ(x, t) = χ(x, 0)δ(t) + 1
2 [∂τχ](x, |t|)

is positive definite in the sense of the classical Bochner’s Theorem, see [7, The-
orem IX.9]. Thus, by Bochner’s Theorem, the time Fourier transform of D is a
nonnegative measure,

D̂χ(x, ω) = χ(x, 0) +
1
2

∫ ∞

−∞
[∂τχ](x, |t|)eiωt dt

= χ(x, 0) +
∫ ∞

0

∂τχ(x, τ) cos(ωτ) dτ

= ω

∫ ∞

0

χ(x, τ) sin(ωτ) dτ = ω Im χ̂(x, ω) ≥ 0.

(1.28)

Since χ is real, D̂χ(x, ω) is symmetric under ω ↔ −ω, and indeed Bochner’s Theo-
rem shows that a symmetric measure of suitably bounded growth is nonnegative if
and only if it is the Fourier transform of a real positive definite distribution.

The simplest physically relevant example of a susceptibility satisfying the power
dissipation condition is obtained with χ(x, τ) = α > 0, a positive constant. Then

(1.29) fπ(x, t) + α

∫ ∞

0

fπ(x, t− τ) dτ = π(x, t).

Using the equation of motion fπ = ∂tφ, we find that

(1.30) π(x, t) = ∂tφ(x, t) + α

∫ ∞

0

∂tφ(x, t− τ) dτ = ∂tφ(x, t) + αφ(x, t),

where we have applied the boundary condition limt→−∞ φ(x, t) = 0. Combined
with the equation of motion ∂tπ = γ∂2

xφ+ f we obtain

(1.31) ∂2
t φ(x, t) + α∂tφ(x, t)− γ∂2

xφ(x, t) = f(x, t),

which is the dynamical equation for a driven damped string, with damping force
per unit length −α∂tφ(x, t). Note that α is dimensionally an inverse time and 1/α
is the characteristic time for the damping of oscillations.

A more realistic model for damping is obtained by supposing χ(x, τ) to be a
nontrivial function of τ as in (1.21). To allow for damping restricted to only a part
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of the string, we suppose that χ depends on x as well. For instance, we could take
the Debye susceptibility

(1.32) χ(x, τ) = α(x)e−ν(x)τ ,

with α(x) ≥ 0 and ν(x) ≥ 0 nonnegative functions of x. This results in the following
integral-differential equation for φ

(1.33) ∂2
t φ(x, t) + α(x)

∫ ∞

0

e−ν(x)τ∂2
t φ(x, t− τ) dτ − γ∂2

xφ(x, t) = f(x, t),

or after integration by parts

(1.34) ∂2
t φ(x, t) + α(x)∂tφ(x, t)− α(x)ν(x)φ(x, t)

+ α(x)ν(x)2
∫ ∞

0

e−ν(x)τφ(x, t− τ) dτ − γ∂2
xφ(x, t) = f(x, t).

Then

(1.35) D̂χ(x, ω) = α(x)
∫ ∞

0

e−ν(x)τω sin(ωτ) dτ = α(x)
ω2

ν(x)2 + ω2
≥ 0,

so the Debye susceptibility satisfies the power dissipation condition.
The results of [2, 3] show that under the above conditions it is possible to find

a coupling function ς(x, s), s ∈ R, such that solutions to the TDD equations are
generated by solutions to the following extended system

(1.36)

∂tφ(x, t) = fπ(x, t)

∂tπ(x, t) = γ∂2
xφ(x, t) + f(x, t)

∂tψ(x, s, t) = θ(x, s, t)

∂tθ(x, s, t) = ∂2
sψ(x, s, t) + ς(x, s)fπ(x, t),

with

(1.37) fπ(x, t) = π(x, t)−
∫ ∞

−∞
ς(x, s)ψ(x, s, t) ds.

That is, given a solution (φ, π, ψ, θ) to (1.36), at rest at t = −∞ and with fπ given
by (1.37), the first two coordinates (φ, π) obey (1.22) with fπ given by (1.21), and
conversely any solution to (1.21) – (1.22) with the string at rest at t = −∞ arises in
this way. Note that for each fixed x the additional variables θ, ψ may be interpreted
as describing the oscillations of a “hidden string” with coordinate s, displacement
ψ(x, s, t), momentum θ(x, s, t) and driven by external force ς(x, s)fπ(x, t). Thus
(1.36) is precisely the system of coupled strings described above and illustrated in
Figure 1.

The extended system, consisting of the physical and hidden strings is Hamil-
tonian with symplectic form

(1.38) J (φ1, π1, ψ1, θ1;φ2, π2, ψ2, θ2) =
∫

R
{φ1(x)π2(x)− φ2(x)π1(x)}dx

+
∫

R2
{ψ1(x, s)θ2(x, s)− ψ2(x, s)θ1(x, s)}ds dx



138 A. FIGOTIN AND J. SCHENKER

and Hamilton function

(1.39) Hf (φ, π, ψ, θ, t) =
1
2

∫

R

{
fπ(x)2 + γ

(
∂xφ(x)

)2} dx−
∫

R
f(x, t)φ(x) dx

+
1
2

∫

R2

{
θ(x, s)2 +

(
∂sψ(x, s)

)2} ds dx,

where fπ is given by (1.37), that is fπ(x) = π(x)− ∫
ς(x, s)ψ(x, s) ds.

The dynamical equation for an excitation of the hidden string at x is a driven
wave equation

(1.40) ∂2
t ψ(x, s, t) = ∂2

sψ(x, s, t) + ς(x, s)fπ(x, t).

The solution to (1.40) with the hidden string at rest at t = −∞ is easily written
down, see (1.3):

(1.41) ψ(x, s, t) =
1
2

∫ ∞

0

[∫ s+τ

s−τ

ς(x, r) dr
]
fπ(x, t− τ) dτ.

Thus

(1.42)
∫

R
ς(x, s)ψ(x, s, t) ds

=
∫ ∞

0

[
1
2

∫

R
ς(x, s)

∫ s+τ

s−τ

ς(x, r) dr ds
]
fπ(x, t− τ) dτ.

Comparing (1.21) and (1.37) we see that for the extension to reproduce the TDD
system upon elimination of ψ and θ it is necessary and sufficient that the coupling
ς(x, s) satisfy (1.7), that is

(1.43) χ(x, τ) =
1
2

∫

R
ς(s, x)

∫ s+τ

s−τ

ς(x, r) dr ds.

The existence of such a function, which is unique under a natural symmetry as-
sumption, is guaranteed by the power dissipation condition [2, 3].

Indeed, if we let ς̂(x, σ) denote the s-Fourier transform of ς,

(1.44) ς̂(x, σ) =
∫

R
ς(x, s)eiσs ds,

then (1.43) is equivalent to

(1.45) D̂χ(x, ω) = ς̂(x, ω)ς̂(x,−ω),

so it suffices to take [2]

(1.46) ς̂(x, σ) =
√

2D̂χ(x, σ).

Furthermore, this choice of ς̂(x, σ) is unique if we ask further that ς̂(x, σ) ≥ 0 and
that σ 7→ ς̂(x, σ) be symmetric. Then,

(1.47) ς(x, s) =
1
2π

∫

R

√
2D̂χ(x, σ)e−iσs dσ =

1
2π

∫

R

√
2D̂χ(x, σ) cos(σs) dσ,

is symmetric and positive definite.
For example, in view of (1.28), (1.35), and (1.47), the following coupling pro-

duces the Debye susceptibility,

(1.48) ς(x, s) =
√

2α(x)∂sΨ(ν(x)s).
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where

Ψ(s) =
1

2πi

∫ ∞

−∞

1
ω

√
ω2

1 + ω2
eiωs dω =

s

|s|
1
π

∫ 1

0

1√
1− u2

e−u|s| du

=
s

|s|
1
π

∫ π/2

0

e−|s| sin(φ) dφ.

(1.49)

That is,

(1.50) ς(x, s) =
√

2α(x)
(
δ(s)− ν(x)

π

∫ π/2

0

sin(φ)e−ν(x)|s| sin(φ) dφ
)
.

2. Local energy and momentum conservation in the extended system

We interpret the Hamiltonian H0 with f ≡ 0 as the internal energy of the
damped string system consisting of the coupled physical and hidden strings. We
have conservation of energy in the extended system, in the form

(2.1)
d
dt
H0 =

∫

R
f(x, t)∂tφ(x, t) dx,

i.e., the rate of change of H0 is the rate of work done on the system by the external
force.

A significant advantage of working with the extend system is a transparent
interpretation of the energy of the dissipative string as a sum of contributions from
the physical and hidden strings. That is, it is natural to break the H0 into two
pieces

(2.2) H0(φ, π, ψ, θ, t) = H0(φ, π, ψ) +Hhs(ψ, θ),

the energy of the physical string and hidden strings respectively,

H0(φ, π, ψ) =
1
2

∫

R

{
fπ(x)2 + γ

(
∂xφ(x)

)2} dx(2.3)

Hhs(ψ, θ) =
1
2

∫

R2

{
θ(x, s)2 + (∂sψ(x, s)

)2} ds dx,(2.4)

with fπ given by (1.37).
The internal energy H0 can be written as the integral of a local energy density

(2.5) E(x, t) = E0(x, t) + Ehs(x, t)

with

(2.6)
E0(x, t) = 1

2

{(
∂tφ(x, t)

)2 + γ
(
∂xφ(x, t)

)2}

Ehs(x, t) =
1
2

∫

R

{(
∂tψ(x, s, t)

)2 +
(
∂sψ(x, s, t)

)2} ds.

The energy conservation law (2.1) has the following local expression

(2.7) ∂tE(x, t) + ∂xJ(x, t) = f(x, t)∂tφ(x, t)

with the energy current

(2.8) J(x, t) = −γfπ(x, t)∂xφ(x, t) = −γ∂tφ(x, t)∂xφ(x, t).

It is interesting to compute the time derivatives of E0 and Ehs alone:

∂tE0(x, t) + ∂xJ(x, t) = f(x, t)∂tφ(x, t)− ∂t∆(x, t)∂tφ(x, t)(2.9)

∂tEhs(x, t) = ∂t∆(x, t)∂tφ(x, t)(2.10)
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with

∆(x, t) = π(x, t)− fπ(x, t) =
∫

R
ς(x, s)ψ(x, s, t) ds

=
∫ ∞

0

χ(x, τ)∂tφ(x, t− τ) dτ,

(2.11)

where we have used (1.42). The first of these equations (2.9) is simply the local
version of the energy law for the TDD string (1.25). From the second (2.10), we
see that the energy of the hidden strings, which is the energy lost to dissipation up
to time t, is

(2.12)
Ehs(x, t) =

∫ t

−∞
∂t′φ(x, t′)

∫ ∞

0

χ(x, τ)∂2
t′φ(x, t′ − τ) dτ dt′.

=
∫ t

−∞

∫ t

−∞
Dχ(x, t1 − t2)∂t1φ(x, t1)∂t2φ(x, t2) dt1 dt2.

If the susceptibility χ — and hence the coupling ς — is independent of x,
then the extended system is invariant under spatial translations. Associated to this
symmetry is a local conservation law

(2.13) ∂tp(x, t) + ∂xT (x, t) = −f(x, t)∂xφ(x, t),

for the wave momentum density

p(x, t) = −π(x, t)∂xφ(x, t)−
∫

R
θ(x, s, t)∂xψ(x, s, t) ds

= −{∂tφ(x, t) + ∆(x, t)}∂xφ(x, t)−
∫

R
∂tψ(x, s, t)∂xψ(x, s, t) ds,

(2.14)

with wave momentum flux, called stress,

(2.15) T (x, t) = E0(x, t) + ∆(x, t)∂tφ(x, t)

+
∫ {

(∂tψ(x, s, t))2 − (
∂sψ(x, s, t)

)2} ds.

When the driving force vanishes, f = 0, the total wave momentum

(2.16) P =
∫

R
p(x, t) dx

is a conserved quantity.
The wave momentum density p = p0 + phs is again a sum of contributions

p0(x, t) = −{∂tφ(x, t) + ∆(x, t)}∂xφ(x, t)(2.17)

phs(x, t) = −
∫

R
∂tψ(x, s, t)∂xψ(x, s, t) ds(2.18)

from the physical and hidden strings. Likewise we separate the stress

(2.19) T (x, t) = T0(x, t) + Ths(x, t)

into two pieces,

T0(x, t) = E0(x, t) + ∆(x, t)∂tφ(x, t)(2.20)

Ths(x, t) =
1
2

∫
{(∂tψ(x, s, t))2 − (∂sψ(x, s, t))2}ds.(2.21)
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Then

∂tp0(x, t) + ∂xT0(x, t) = −f(x, t)∂xφ(x, t) + ∂x∆(x, t)∂tφ(x, t)(2.22)

∂tphs(x, t) + ∂xThs(x, t) = −∂x∆(x, t)∂tφ(x, t).(2.23)

When we study eigenfunctions below, it will be convenient to work with com-
plex valued solutions. In the above expressions, terms which are quadratic in
the field variables should be modified in the complex case by the replacement
ab→ Re āb. That is

(2.24)

E0(x, t) = 1
2{|∂tφ(x, t)|2 + γ|∂xφ(x, t)|2}

Ehs(x, t) =
1
2

∫

R
{|∂tψ(x, s, t)|2 + |∂sψ(x, s, t)|2}ds

J(x, t) = −γ Re ∂tφ(x, t)∂xφ(x, t)

p0(x, t) = −Re ∂tφ(x, t)∂xφ(x, t)− Re ∆(x, t)∂xφ(x, t),

etc.

3. The eigenfunction equation

It is useful and interesting to study steady state solutions to the extended
system (1.36), for example solutions which are periodic in time e−iωt

(
φω(x), πω(x),

ψω(x, s), θω(x, s)
)
. We refer to the spatial component Φω(x, s) =

(
φω(x), πω(x),

ψω(x, s), θω(x, s)
)

of such a time periodic solution as an eigenfunction for the linear
system (1.36) with eigenvalue ω. Thus an eigenfunction satisfies

(3.1)

−iωφω(x) = fπ(x)

−iωπω(x) = γ∂2
xφω(x)

−iωψω(x, s) = θω(x, s)

−iωθω(x, s) = ∂2
sψω(x, s) + ς(x, s)fπ(x),

with

(3.2) fπ(x) +
∫

R
ς(x, s)ψω(x, s) ds− πω(x) = 0.

We see that the displacement of the hidden string at position x satisfies

(3.3) −∂2
sψω(x, s)− ω2ψω(x, s) = −iως(x, s)φω(x),

so

(3.4) ψω(x, s)
= a(x) cos(ωs) + b(x) sin(ωs)− iωφω(x)

2π
P.V.

∫ ∞

−∞
e−iσs 1

σ2 − ω2
ς̂(x, σ) dσ

= a(x) cos(ωs) + b(x) sin(ωs) +
iφω(x)

2

∫ ∞

−∞
sin(ω|s′ − s|)ς(x, s′) ds′,



142 A. FIGOTIN AND J. SCHENKER

with a(x) and b(x) undetermined functions of x. Here, P.V. denotes the “principle
value” integral,

(3.5) P.V.
∫ ∞

−∞
e−iσs 1

σ2 − ω2
ς̂(x, σ) dσ

= lim
δ↓0

∫

{σ:|σ2−ω2|≥δ}
e−iσs 1

σ2 − ω2
ς̂(x, σ) dσ

= lim
δ↓0

1
2

∫

R
e−iσs

[
1

σ2 − (ω + iδ)2
+

1
σ2 − (ω − iδ)2

]
ς̂(x, σ) dσ.

By (3.4), we see that

(3.6)
∫

R
ς(x, s)ψω(x, s) ds = a(x)ς̂(x, ω)

− φω(x)
2π

P.V.
∫ ∞

−∞

iω
σ2 − ω2

ς̂(x, σ)ς̂(x,−σ) dσ.

Recalling (1.45), that ς̂(x, σ)ς̂(x,−σ) = D̂χ(x, σ) = 2σ Im χ̂(x, σ), we see that the
final term on the r.h.s. can be expressed

(3.7) − φω(x)
2π

P.V.
∫ ∞

−∞

2iω
σ2 − ω2

σ Im χ̂(x, σ) dσ

= − iφω(x)
2π

P.V.
∫ ∞

−∞

{
1

σ − ω
+

1
−σ − ω

}
σ Im χ̂(x, σ) dσ

= −iωRe χ̂(x, ω)φω(x),

where we have used the symmetry σ Im χ̂(x, σ)=−σ Im χ̂(x,−σ) and the “Kramers–
Krönig relation”

(3.8) ωRe χ̂(x, ω) = P.V.
1
π

∫ ∞

−∞

1
σ − ω

σ Im χ̂(x, σ) dσ.

Plugging this result into (3.2) and combining the first two equations of (3.1)
we find that the string displacement φ solves the following elliptic problem

(3.9) γ∂2
xφω(x) = −ω2(1 + Re χ̂(x, ω))φω(x)− iωa(x)ς̂(x, ω).

In analyzing (3.9) we should distinguish two cases:
(1) ς(x, ω) = 0 for all x.
(2) ς(x, ω) nonzero for x in an open set.

In the first case, which is nongeneric, the medium described by the hidden strings
is not absorbing at the given frequency ω, that is χ̂(x, ω) is real for every x. Thus
(3.9) is a very strong restriction on φω, namely that it should satisfy the Schrödinger
equation

(3.10)
(−γ∂2

x + V (x)
)
φω(x) = λφω(x),

with potential V (x) = −ω2χ̂(x, ω) and spectral parameter λ = ω2. In the second
case, the physical string displacement may be decomposed as follows

(3.11) φω(x) = φ(1)
ω (x) + φ(2)

ω (x),

where φ(1)
ω (x) is any solution to the nondissipative eigenfunction equation

(3.12) γ∂2
xφ

(1)
ω (x) = −ω2(1 + Re χ̂(x, ω))φ(1)

ω (x),
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and φ(2)
ω is an arbitrary function with support in {x : ς̂(x, ω) 6= 0}. Indeed, we need

only choose a to be

(3.13) a(x) = i
γ∂2

xφ
(2)
ω (x) + ω2

(
1 + Re χ̂(x, ω)

)
φ

(2)
ω (x)

ως̂(x, ω)
.

Thus, the physical string displacement for an eigenmode φω(x) may be chosen
arbitrarily within that part of the string which is absorbing at the given frequency ω.
We want to emphasize the significance of this fact, since the formal eigenvalue
problem

(3.14) γ∂2
xφω(x) = −ω2(1 + χ̂(x, ω))φω(x)

does not allow for such arbitrariness in the choice of φω(x). The resolution to this
apparent contradiction lies in recognizing that a TDD system is an open part of
a larger conservative Hamiltonian system. It is only for the extended Hamiltonian
system that the eigenmodes Φω are unambiguously defined with eiωtΦω a stationary
solution to the canonical Hamiltonian evolution equation. The “legitimate” eigen-
modes for the original TDD string consist of projections φω of the eigenmodes Φω

onto the subspace of the physical string. Thus a TDD string, being an open system
has as many eigenmodes, i.e stationary solutions, as its the minimal conservative ex-
tension introduced and described in [1–3]. In particular, a finite-dimensional TDD
system typically has infinitely many stationary solutions and, hence, infinitely many
eigenmodes. Another view on the construction of eigenmodes follows.

The eigenfunctions written down above, involving as they do arbitrary excita-
tions of the hidden strings, may not be relevant to the dynamics (1.36) with the
external force acting on the physical string. Indeed, note that the coefficient b(x)
does not appear in the effective equation (3.9) for φω. To see which eigenfunctions
appear in the expansion of a general solution to (1.36) with a compactly supported
external force, it is convenient to introduce the Fourier-Laplace transform

(3.15) h̃(ζ) =
∫

R
eiζth(t) dt,

defined for
(1) ζ ∈ C if h → 0 super exponentially fast as |t| → ∞, for instance if h is

compactly supported in time.
(2) Im ζ > 0 if h→ 0 super exponentially fast as t→ −∞.
(3) Im ζ < 0 if h→ 0 super exponentially fast as t→∞.

Taking the Fourier – Laplace transform of (1.36) results in the following equations

(3.16)

−iζφ̃(x, ζ) = f̃π(x, ζ)

−iζπ̃(x, ζ) = γ∂2
xφ̃(x, ζ) + f̃(x, ζ)

−iζψ̃(x, s, ζ) = θ̃(x, s, ζ)

−iζθ̃(x, s, ζ) = ∂2
s ψ̃(x, s, ζ) + ς(x, s)f̃π(x, ζ),

with

(3.17) f̃π(x, ζ) = π̃(x, ζ)−
∫ ∞

−∞
ς(x, s)ψ̃(x, s, ζ) ds.

Due to our consideration of solutions with the strings at rest at t = −∞, we
expect the quantities in (3.16) to be well defined only for Im ζ > 0. However,
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if the driving force is compactly supported in time then f̃(x, ζ) is defined for all
ζ ∈ C, and we may extend φ̃(x, ζ) to ζ ∈ C \ R by solving (3.16). Following the
eigenfunction analysis, we obtain, with ε = sign of Im ζ,

ψ̃(x, s, ζ) = − iζφ̃(x, ζ)
2π

∫ ∞

−∞
e−iσs 1

σ2 − ζ2
ς̂(x, σ) dσ

= ε
φ̃(x, ζ)

2

∫ ∞

−∞
eiεζ|s′−s|ς(x, s′) ds′

(3.18)

γ∂2
xφ̃(x, ζ) = −ζ2

(
1 + χ̂(x, εζ)

)
φ̃(x, ζ) + f̃(x, ζ),(3.19)

where χ̂(x, ζ) is defined for Im ζ > 0 as

(3.20) χ̂(x, ζ) =
∫ ∞

0

eiτζχ(x, τ) dτ.

For a function h vanishing at +∞ or −∞ we have the Fourier inversion formula

(3.21) h(t) =
1
2π

∫

R
e−iωt∓ηth̃(ω ∓ iη) dω,

(
lim

t=±∞
h(t) = 0

)
,

with η > 0 arbitrary. Inverting the solution to (3.16) with η > 0 or < 0 produces
distinct solutions to (1.36): for η > 0 we obtain the desired causal solution with
the strings at rest at t = −∞, while for η < 0 we obtain the anti-causal solution
with the strings at rest at t = +∞.

In a certain sense we are only interested in the causal solution to (1.36) and
thus to the solution to (3.16) only for ζ in the upper half-plane. However, since
(3.16) involves a source term, this solution, often called the resolvent, is not directly
expressed as a superposition of eigenfunctions. However, there is a general proce-
dure for decomposing the solution to (3.16) into a superposition of eigenfunctions.
Namely for ω ∈ R we define

(3.22)
(
φω(x), πω(x), ψω(x, s), θω(x, s)

)

= lim
δ→0

(
φ̃(x, ω + iδ)− φ̃(x, ω − iδ), π̃(x, ω + iδ)− π̃(x, ω − iδ),

ψ̃(x, s, ω + iδ)− ψ̃(x, s, ω − iδ), θ̃(x, s, ω + iδ)− φ̃(x, s, ω − iδ)
)
.

Since f̃(x, ζ) is continuous at each ζ = ω ∈ R, it follows from (3.16) that (φω,
πω, ψω, θω) is an eigenfunction for each ω. To recover the resolvent for ζ in the
upper half-plane from the eigenfunctions (3.22), suppose that the external force is
supported in the set {t : t > t0}. Then

(3.23) |f̃(x, ζ)| ≤ Ce− Im ζt0 , (Im ζ > 0).
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Thus exp(−iζt0)f(x, ζ) is bounded in the upper half-plane, and by analyticity we
have,2

(3.24)
(
φ̃(x, ζ), π̃(x, ζ), ψ̃(x, s, ζ), θ̃(x, s, ζ)

)

=
1

2πi

∫

R

ei(ζ−ω)t0

ω − ζ

(
φω(x), πω(x), ψω(x, s), θω(x, s)

)
dω, (Im ζ > 0)

expressing the solution to (3.16) as a superposition of eigenfunctions. (There is a
similar formula for the advanced solution with Im ζ < 0, involving an upper bound
t1 on the support of the external force.)

Now let us fix ω and suppose that we have an eigenfunction of the form (3.22).
Then by (3.18) and (3.19),

ψω(x, s) =
iφω(x)

2

∫ ∞

−∞
sin(ω|s′ − s|)ς(x, s′) ds′ +

gω(x)
2

cos(ωs)ς̂(x, ω)(3.25)

γ∂2
xφω(x) = −ω2

(
1 + Re χ̂(x, ω)

)
φω(x)− iω2 Im χ̂(x, ω)gω(x),(3.26)

with

(3.27) gω(x) = lim
δ→0

{φ̃(x, ω + iδ) + φ̃(x, ω − iδ)}.

In other words, the eigenfunctions which appear in the expansion (3.24) are of the
form (3.9) with b(x) = 0. We refer to such eigenfunctions as spectral eigenfunctions.
By (3.24), the spectral eigenfunctions form a complete set for the description of the
dynamics of the extended system (1.36). Thus, the freedom to choose gω in (3.26)
provides us with a rich enough family of solutions to describe the dynamics of the
TDD string.

Note that a solution to (3.16) satisfies the eigenvalue equation away from the
spatial support of the driving force. Thus, one may try to produce an eigenfunction
as the limit of a sequence or solutions to (3.16) with a sequence of driving forces
supported farther and farther from the origin. When this procedure works to pro-
duce a nontrivial eigenmode, the result is of the form (3.26) with a special choice
of the arbitrary function gω. We can obtain in this way,

(1) The causal eigenfunctions with gω(x) = φω(x),

ψω(x, s) =
φω(x)

2

∫ ∞

−∞
eiω|s′−s|ς(s′, x) ds′(3.28)

γ∂2
xφω(x) = −ω2(1 + χ̂(x, ω))φω(x),(3.29)

corresponding to a driving force in the distant past and the causal bound-
ary condition with the strings at rest at t = −∞.

(2) The anti-causal eigenfunctions with gω(x) = −φω(x),

ψω(x, s) =
φω(x)

2

∫ ∞

−∞
e−iω|s′−s|ς(s′, x) ds′(3.30)

γ∂2
xφω(x) = −ω2(1 + χ̂(x, ω))φω(x),(3.31)

2For a general linear system the limit on the right hand side of (3.22) is a defined only as
a vector valued measure and the integral on the right hand side of (3.24) should be interpreted
as the integral of 1/(ω − ζ) against this measure. For the systems of coupled strings considered
here, however, these boundary measures are always absolutely continuous, so (3.24) holds with
(φω , πω , ψω , θω) defined for almost every ω by (3.22).
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corresponding to a driving force in the distant future and the anti-causal,
or advanced, boundary condition with the strings at rest at t = +∞.

4. Energy flux in an eigenfunction

The energy density E in an eigenfunction, at a point x with ς̂(x, ω) 6= 0, is
typically infinite due to the contribution from the hidden strings. This result is to
be expected physically as the eigenfunction represents the idealized steady propa-
gation of a monochromatic wave through an absorbing medium with infinite heat
capacity. However, due to the decoupling between the hidden strings, energy can
flow only through the physical string and we expect the energy flux J to be finite.
Furthermore as we shall see ∂xJ , which by (2.7) is formally equal to −∂tE , can be
nonzero at a point x, in which case the eigenfunction is a steady state in which
energy is dissipated to or absorbed from the medium at x at a constant rate.

By (2.8), the energy flux for an eigenfunction is

(4.1) J(x, t) = −γ Re
{

iωφω(x)∂xφω(x)
}

= γω Imφω(x)∂xφω(x).

Thus, by (3.26),

(4.2) −∂xJ(x) = −ω Imφω(x)γ∂2
xφω(x) = ω3 Im χ̂(x, ω)Re

{
φω(x)gω(x)

}
.

for a spectral eigenfunction, where gω(x) is the arbitrary function describing the
excitation of the medium, as represented by the hidden strings. The energy density
of the physical string

(4.3) E0(x) = 1
2{ω2|φω(x)|2 + γ|∂xφω(x)|2},

is constant in time. We have a constant rate of dissipation at each x with−∂xJ(x) 6=
0,

(4.4) ∂tE(x) = ∂tEhs(x) = ω3 Im χ̂(x, ω)Re
{
φω(x)gω(x)

}
.

Thus the eigenfunction represents a steady state situation in which energy is flowing
into or out of the hidden strings at a constant rate at each point x with Im χ̂(x, ω) 6=
0.

For a general spectral eigenfunction (3.26), the dissipation ∂tE(x) may be pos-
itive or negative, however for a causal eigenfunction (3.29), with gω = φω, we have

∂tE(x) = ∂tEhs(x) = ω3 Im χ̂(x, ω)|φω(x)|2 > 0, (causal eigenfunction)(4.5)

corresponding to a steady dissipation of energy from the physical string into the
medium, represented by the hidden strings. Similarly, for an anti-causal eigenfunc-
tion (3.31) there is a steady flux of energy out of the medium and into the physical
string

∂tEhs(x) = −ω3 Im χ̂(x, ω)|φω(x)|2 < 0, (anti-causal eigenfunction).(4.6)

5. Plane waves and momentum flux in an homogeneous system

Suppose that the susceptibility χ(x, τ) = χ(τ) is constant for the whole range
of x ∈ R. Then it is interesting to look for plane wave solutions ei(kx−ωt)

(
φ0, π0,

ψ0(s), θ0(s)
)

with φ0, π0 constants and ψ0(s), θ0(s) independent of x, i.e., eigen-
functions ∝ eikx.
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A first observation is that there are no causal or anti-causal eigenfunctions of
this form, at least at frequencies with Im χ̂(ω) > 0. Indeed a causal solution would
satisfy

(5.1) −γk2φ0 = −ω2
(
1 + χ̂(ω)

)
φ0,

and the only nontrivial solutions to this equation are exponentially growing as
x → ±∞ unless χ̂(ω) is real. Such evanescent waves play a role in constructing
scattering states for in-homogeneous systems but are physically irrelevant in the
homogeneous system.

Thus to find plane wave solutions it is necessary to look beyond causal eigen-
functions. For a plane wave spectral eigenfunction, see (3.26), we have

−γk2φ0 = −iω2g0 Im χ̂(ω)− ω2
(
1 + Re χ̂(ω)

)
φ0,(5.2)

ψ0(s) =
g0
2

cos(ωs)ς̂(ω) +
iφ0

2

∫ ∞

−∞
sin(ω|s′ − s|)ς(s′) ds′,(5.3)

with g0 an arbitrary constant describing the excitation of the hidden strings. A
bounded solution results only for k real, so

(5.4) g0 = iαφ0, α ∈ R,
must be a pure imaginary multiple of φ0. Furthermore, we must have

(5.5) 1 + Re χ̂(ω)− α Im χ̂(ω) ≥ 0.

Then setting

(5.6) γk2 = ω2
(
1 + Re χ̂(ω)− α Im χ̂(ω)

)
,

we obtain a nontrivial plane wave solution.
If the medium is not dissipative at frequency ω, so Im χ̂(ω) = 0, there is a

dispersion relation between k and ω

(5.7) γk2 = ω2
(
1 + Re χ̂(ω)

)
, (Im χ̂(ω) = 0).

At frequencies ω with nontrivial dissipation, that is Im χ̂(ω) 6= 0, there is no relation
between k and ω. Indeed k may be chosen arbitrarily provided we take

(5.8) α =
1 + Re χ̂(ω)

Im χ̂(ω)
− γk2

ω2 Im χ̂(ω)
.

By (4.1), the energy flux for a plane wave

(5.9) J = γωk|φ0|2
is constant. Thus ∂xJ = 0 and plane wave solutions represent a steady state
flow without dissipation of energy. More precisely, the dissipation of energy to
the medium, as described by the hidden strings, is exactly balanced by the energy
emitted from the medium. The energy density of the physical string is

(5.10) E0 = (ω2 + γk2)|φ0|2
and the energy density of the medium, described by the hidden strings, is of course
infinite.

As the system is homogeneous, we can also consider the wave momentum den-
sity and stress in a plane wave eigenfunction. By (2.17) the wave momentum density
of the physical string is

(5.11) p0 = ωk|φ0|2 − k Im ∆0φ0,
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where

(5.12) ∆0 =
∫

R
ς(s)ψ0(s) ds = iωφ0

(
α Im χ̂(ω)− Re χ̂(ω)

)
.

Thus

(5.13) p0 = ωk{1 + Re χ̂(ω)− α Im χ̂(ω)}|φ|2 =
γk3

ω
|φ0|2.

The wave momentum density of the hidden strings is infinite, since

(5.14) phs = ωk

∫

R
|ψ0(s)|2 ds

by (2.18).
Of more interest is the stress, which by (2.19) – (2.20) is

(5.15) T = E0 + ω Im ∆0φ0 + Ths,

where E0 given by (5.10) and Ths is formally

(5.16) Ths =
1
2

∫ ∞

−∞
{ω2|ψ0(s)|2 − |∂sψ0(s)|2}ds.

The integral on the r.h.s. of (5.16) does not converge absolutely, but we can regu-
larize it by defining Ths = limδ→0 Ths(δ) with

(5.17) Ths(δ) =
1
2

∫ ∞

−∞
e−δ|s|{ω2|ψ0(s)|2 − |∂sψ0(s)|2}ds.

To evaluate the integral in (5.17) it is useful to write

|∂sψ0(s)|2 =
1
2
∂2

s |ψ0(s)|2 − Reψ0(s)∂2
sψ0(s)

=
1
2
∂2

s |ψ0(s)|2 + ω2|ψ0(s)|2 + ως(s) Im ψ0(s)φ0,

(5.18)

where we have used (3.3). Thus

Ths(δ) = −1
2

∫ ∞

−∞
e−δ|s|{ 1

2∂
2
s |ψ0(s)|2 + ως(s) Imψ0(s)φ0}ds

=
δ

2
|ψ0(0)|2 − δ2

4

∫ ∞

−∞
e−δ|s||ψ0(s)|2 ds

− 1
2
ω

∫ ∞

−∞
e−δ|s|ς(s) Imψ0(s)φ0 ds.

(5.19)

It follows that

(5.20) Ths = lim
δ→0

Ths(δ) = −1
2
ω

∫ ∞

−∞
ς(s) Imψ0(s)φ0 ds = −1

2
ω Im ∆0φ0,

if, for instance, |ς(s)| is integrable. Thus

T = E0 +
1
2
ω Im∆0φ0

=
1
2

(
ω2(1 + Re χ̂(ω)− α Im χ̂(ω)) + γk2

) |φ0|2 = γk2|φ0|2,

(5.21)

which is identical to the result for the undamped string!
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6. Scattering eigenfunctions for a semi-infinite medium

To close, we would like to illustrate the power of the above method by unam-
biguously constructing the scattering states representing an idealized description of
the following experiment. Imagine that we have an long, i.e., infinite, string whose
right half (x > 0) is subject to dispersion and dissipation with susceptibility χ(τ).
That is, the the susceptibility for the whole string is

(6.1) χ(x, τ) =

{
0 x < 0
χ(τ) x > 0

.

Suppose we drive the left end of the string, at x = −∞, periodically with frequency
ω, sending an incoming wave toward the TDD right half of the string. After some
time a steady state is reached in which a certain fraction of the incoming wave is
absorbed by the dissipative half of the string and a certain fraction is reflected.

The steady state eigenfunction describing the above experiment is a causal
eigenfunction since the source is at x = −∞ and started in the distant past. Thus
by (3.29), the string displacement satisfies

(6.2) γ∂2
xφω(x) = −ω2

(
1 + I[x > 0]χ̂(ω)

)
φω(x),

where I[x > 0] = 1 for x > 0 and 0 otherwise. Indeed, this is the naive equation
that one might right down for the scattering states of a TDD string. However, it
is only within the context of the extended Hamiltonian system that we understand
this to be only one of many possible eigenfunction equations, the choice of which is
dictated by the physics under consideration, namely a source at spatial infinity in
the distant past.

By (6.2), we have

(6.3) φω(x) = eik<x + re−ik<x, k< =
ω√
γ
, (x < 0)

on the left half of the string, up to an over all multiple which we fix to be 1 without
loss. In (6.3) the term eik<x is the incoming wave and re−ik>x is the reflected wave.

To find the reflection coefficient r we need to solve for the form of the eigen-
function on the right half of the string. Again by (6.2), we have

(6.4) γ∂2
xφω(x) = −ω2

(
1 + χ̂(ω)

)
φω(x), (x > 0)

for x > 0. Furthermore, since we require the solution to be bounded this determines
φ uniquely up to an over all multiple

(6.5) φω(x) = veik>x,

where v is an, as yet, undetermined transmission coefficient and

(6.6) k> = +

√
ω2

γ

(
1 + χ̂(ω)

)
.
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Here +
√
z denotes the unique square root of z in the upper half-plane.3 Since

Im k> > 0, at least if Im χ̂(ω) 6= 0, we see that φω(x) decays exponentially in the
dissipative half of the physical string (x > 0). The excitation of the hidden strings,
which are restricted to x > 0, is given by (3.28):

(6.7) ψω(x, s) =
v

2
eik>x

∫ ∞

−∞
eiω|s−s′|ς(s′) ds′, (x > 0).

To determine v and r we note that the eigenfunction equation (6.2) forces φω

and ∂xφω to be continuous functions of x, in particular at x = 0. Thus,

lim
x↑0

φω(x) = 1 + r = v = lim
x↓0

φω(x)(6.8)

lim
x↑0

∂xφω(x) = k<(1− r) = k>v = lim
x↓0

∂xφω(x).(6.9)

We conclude that

(6.10) v =
2

1 + ρ(ω)
, r =

1− ρ(ω)
1 + ρ(ω)

,

where

(6.11) ρ(ω) =
k>

k<
=

{
+
√

1 + χ̂(ω) ω > 0,
− +

√
1 + χ̂(ω) ω < 0.

It is useful to consider some general properties of ρ(ω) and the reflection and
transmission coefficients. To begin note that since ω Im χ̂(ω) ≥ 0 we have

(6.12) ωRe +
√

1 + χ̂(ω) ≥ 0,

and thus

(6.13) Re ρ(ω) ≥ 0.

This implies that

(6.14) 1− |r|2 =
4

1 + |ρ(ω)|2 Re ρ(ω) = |v|2 Re ρ(ω) = |v|2 Re k>

k<
≥ 0,

so, in particular,

(6.15) |r| ≤ 1.

Equation (6.14) expresses the continuity of the energy flux J(x) at x = 0, since
by (4.1)

J(x) = γω Imφω(x)∂xφω(x)

= γω

{
k<(1− |r|2) x < 0
Re k>|v|2e−2 Im k>x x > 0

=
√
γω2(1− |r|2)

{
1 x < 0,
e−2 Im k>x x > 0.

(6.16)

3If bχ(ω) is real and (1+ bχ(ω)) > 0 then the medium transmits at frequency ω and k> should
be determined as the limit

k> = lim
δ↓0

+

s
(ω + iδ)2

γ
(1 + bχ(ω + iδ)).
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Furthermore, we see that the energy flux is nonnegative, representing a flow of
energy from the source at x = −∞, and the rate of dissipation, −∂xJ(x) 6= 0, is
nonzero for every x > 0,

(6.17) −∂xJ(x) = 2
√
γω2(1− |r|2) Im k>e−2 Im k>x, (x > 0).

Finally, we note that the energy density of the physical string is

E0(x) =
1
2
{ω2|φω(x)|2 + γ|∂xφω(x)|2}

=

{
ω2(1 + |r|2) x < 0,
ω2 1

2 (1 + |1 + χ̂(ω)|)|v|2e−2 Im k>x x > 0,

= ω2(1 + |r|2)
{

1 x < 0,
e−2 Im k>x x > 0,

(6.18)

where we have noted that by (6.10)

(6.19) 1 + |r|2 =
1 + |ρ(ω)|2

2
|v|2 =

1 + |1 + χ̂(ω)|
2

|v|2.

In summary, the scattering eigenmode

φ(x, t) =

{
eiω(x/

√
γ−t) + re−iω(x/

√
γ+t) x < 0

veiω(ρ(ω)x/
√

γ−t) x > 0,
(6.20)

ψ(x, s, t) =
v

2
eiω(ρ(ω)x/

√
γ−t)

∫

R
eiω|s−s′|ς(s′) ds′, (x > 0),(6.21)

describes a steady state in which the incoming wave is partially reflected, with the
remainder an evanescent transmitted wave that penetrates the dissipative part of
the string with an exponential profile resulting in an excitation of the hidden strings
accounting for dispersion and dissipation. The total rate of dissipation in the TDD
portion of the string is

(6.22) −
∫ ∞

0

∂xJ(x) dx = J(0) =
√
γω2(1− |r|2).
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